آزمون تحلیل واریانس ANOVA تنها به این سوال پاسخ می دهد که آیا بین گروه های مختلف مستقل تفاوت میانگین(متغیر کمی) وجود دارد یا ندارد؟ یعنی از کیفیت تفاوت میانگین اطلاعاتی به ما نمی دهد. (کیفیت تفاوت یعنی اینکه بیان کند بین کدام گروه ها تفاوت وجود دارد و جهت این تفاوت به کدام سمت است)

بنابراین برای رفع این مشکل باید از آزمون های تعقیبی مناسب استفاده نماییم. این آزمون های مکمل را Post hoc می خوانند اما زمانی که از درون نرم افزار می خواهیم دست به انتخاب آزمون های تعقیبی post hoc بزنیم با دو مشکل و ابهام مواجه هستیم.

وقتی از ANOVA برای آزمون برابری حداقل سه گروه استفاده می‌کنید، «معنی‌دار آماری» (Statistical Significant) به این معنی است که میانگین همه گروه‌ها برابر نیستند. با این حال، نتایج حاصل از آزمون یا جدول ANOVA مشخص نمی‌کند که تفاوت‌های مورد نظر، مختص کدام جفت از گروه‌ها است. تشخیص تفاوت بین گروه‌های مختلف، با کنترل میزان خطای آزمون آماری، به عهده روش‌هایی به نام پس آزمون یا آزمون تعقیبی در تحلیل واریانس است.

در بخش قبل دریافتیم میانگین زمان بقا در گریدهای متفاوت یکسان نیست و فرض صفر رد شده است، حال قصد آن را داریم که دریابیم که تفاوت و اختلاف در کدام میانگین ها وجود دارد که باعث شده است فرض صفر رد شود.

برای درک این موضوع از آزمون تعقیبی یا Hoc Post که به آن Multiple Comparison نیز گفته می شود.

آزمون بونفرونی یا Bonferroni

این آزمون نیز برای مقایسه میانگین گروه ها مستقل زیر 4 گروه مناسب است و درست مثل آزمون قبل از آماره t دو نمونه مستقل بین جفت های بین گروه ها استفاده می کند. فراموش نشود که کنتون معتقد است که آزمون بونفرونی تلاش می کند که با ایجاد تنظیم در طول آزمون مقایسه ای جفت جفت، از نمایش داده هایی که از نظر آماری نادرست است خودداری نماید.

این آزمون توان اندکی در قابلیت تشخیص تفاوت و تمایز بین گروه ها دارا است. یعنی تفاوت باید بسیار آشکار و چشمگیر باشد تا بتوان توسط این آزمون معناداری تفاوت بین گروه های مستقل را تاییدی نمود. این دلیلی محکم بر محافظه کار بودن این آزمون است. البته به دلیل انعطاف بالا و سادگی محاسبات در دسته آزمون های تعقیبی متداول قرار می گیرد.

شفه یا Scheffe

باید قبل از اجرا آزمون آنووا ANOVA و آزمون های تعقیبی آن ابتدا یک فراوانی ساده را با SPSS از متغیر کیفی و یا FACTOR خود بگیرند تا مشخص شود که آیا تعداد مشاهدات یا داده های گروه های مستقل با هم برابر است یا خیر. زیرا در بسیاری از اوقات حجم نمونه بین گروه های مستقلی که می خواهیم متغیر کمی خود را در بین آن ها فراوانی شماری نماییم، حجم نمونه هاینابرابری دارند.

در این هنگام این آزمون شفه که مناسب‌ترین و دقیقترین نتایج را در اختیار محقق قرار می دهد. اشکال عمده این روش، محتاطانه یا محافظه‌کارانه بودن آن است. بدین معنی که چون آزمون شفه تمامی ترکیب‌های خطی احتمالی میانگین گروه‌ها را آزمون می‌کند، بنابراین، در این آزمون، صرفاً ترکیب‌های جفتی آزمون نمی‌شوند. در نتیجه آزمون شفه نسبت به سایر آزمون‌ها محافظه‌کارتر است.

به همین خاطر، برای این که تفاوت بین میانگین‌ها معنی‌دار باشد، نیازمند میزان بالایی از این تفاوت هستیم. آزمون شفه را معمولا با آزمون توکی که در بخش های بعد با آن موجه خواهیم شد، مقایسه می کنند.همچنین، آزمون شفه، در مقایسه با آزمون توکی، در یک مثال کاملا یکسان و با داده های یکسان، فرض صفر را کمتر رد می‌کند.

در جمع بندی باید گفت که که این آزمون نسبت به آزمون توکی قابلیت کاربرد برای مقایسه گروه های مستقل با حجم نمونه های متفاوت و نابرابر را دارد. همچنین در این آژمون توزیع داده های می تواند نرمال و یا غیر نرمال باشد و حتی این آزمون نسبت به شرط برابری واریانس های گروه های مستقل حساسیتی ندارد.

توکی یا Tukey

آزمون توکی یا HSD آزمون معناداری حقیقی تفاوت بین میانگین ها، یک روش مقایسه ی میانگین چند مرحله ای است. در آن ابتدا میانگین متغیر کمی در تمام گروه های مستقل از هم محاسبه شده و سپس اولویت بندی و مرتب می شوند. سپس در قالب یک روش محافظه کار میانگین تمام جفت های ممکن با هم تمایز سنجی می شوند و این تفاوت سنجی بین تمام جفت های میانگین ها مشابه با آزمون t است. این آزمون زمانی که تعداد گروه ها زیاد است یکی از بهترین آزمون های post hoc می باشد.

همچنین این پیش فرض را نباید از خاطر برد که تنها زمانی میتوان از این آزمون تعقیبی بهره برد که حجم نمونه گروه ها با هم برابر باشد. متاسفانه این نکته ایست که بسیاری از کسانی که کار آماری پژوهش را انجام می دهند از آن غفلت می کنند و میتوان از آن به عنوان یک اشکال ساختاری در تجزیه تحلیل واریانس یک طرفه در تحقیقات ایران نام برد.

بی توکی Tukey’s b

این آزمون نیز یک روش مقایسه ی میانگین چند مرحله ای است. در آن ابتدا میانگین متغیر کمی در تمام گروه های مستقل از هم محاسبه شده و سپس اولویت بندی و مرتب می شوند. سپس در قالب یک روش محافظه کار میانگین تمام جفت های ممکن با هم تمایز سنجی می شوند و این تفاوت سنجی بین تمام جفت های میانگین ها مشابه با آزمون t است. تفاوت آن نسبت به آزمون توکی این است که پیش فرض برابر بودن حجم نمونه گروه ها در آن وجود ندارد.

دانکن یا Duncan

در این آزمون پیش فرض برابر بودن حجم نمونه گروه ها در آن وجود ندارد. در این آزمون را که چند دامنه دانکن نیز می خوانند، به دلیل توان بالای آن در تشخیص تمایز بین میانگین در گروه های مستقل رد رشته هایی چون پزشکی، زیست، شیمی و فیزیک و …… به کرات استفاده می کنند. هرچند هایر و همکارانش در سال 2006 پیرامون این کاربرد بدلیل عدم کنتل چندان بالای این آزمون بر خطاها مورد انتقاد قرار دادند.

Published by

ساره واحدی
svahedi72

ساره واحدی هستم؛ دانشجوی پانزدهمین دوره "علم داده" در آکادمی دایکه، دانشجوی کارشناسی ارشد فیزیک و علاقمند به کار کردن با دیتاها